chroma-core/chroma
Chroma - the open-source embedding database.
The fastest way to build Python or JavaScript LLM apps with memory!
|
|
Chroma Cloud
Our hosted service, Chroma Cloud, powers serverless vector and full-text search. It’s extremely fast, cost-effective, scalable and painless. Create a DB and try it out in under 30 seconds with $5 of free credits.
API
The core API is only 4 functions (run our 💡 Google Colab):
|
|
Learn about all features on our Docs
Features
- Simple: Fully-typed, fully-tested, fully-documented == happiness
- Integrations:
🦜️🔗 LangChain
(python and js),🦙 LlamaIndex
and more soon - Dev, Test, Prod: the same API that runs in your python notebook, scales to your cluster
- Feature-rich: Queries, filtering, regex and more
- Free & Open Source: Apache 2.0 Licensed
Use case: ChatGPT for ______
For example, the "Chat your data"
use case:
- Add documents to your database. You can pass in your own embeddings, embedding function, or let Chroma embed them for you.
- Query relevant documents with natural language.
- Compose documents into the context window of an LLM like
GPT4
for additional summarization or analysis.
Embeddings?
What are embeddings?
- Read the guide from OpenAI
- Literal: Embedding something turns it from image/text/audio into a list of numbers. 🖼️ or 📄 =>
[1.2, 2.1, ....]
. This process makes documents “understandable” to a machine learning model. - By analogy: An embedding represents the essence of a document. This enables documents and queries with the same essence to be “near” each other and therefore easy to find.
- Technical: An embedding is the latent-space position of a document at a layer of a deep neural network. For models trained specifically to embed data, this is the last layer.
- A small example: If you search your photos for “famous bridge in San Francisco”. By embedding this query and comparing it to the embeddings of your photos and their metadata - it should return photos of the Golden Gate Bridge.
Embeddings databases (also known as vector databases) store embeddings and allow you to search by nearest neighbors rather than by substrings like a traditional database. By default, Chroma uses Sentence Transformers to embed for you but you can also use OpenAI embeddings, Cohere (multilingual) embeddings, or your own.
Get involved
Chroma is a rapidly developing project. We welcome PR contributors and ideas for how to improve the project.
- Join the conversation on Discord -
#contributing
channel - Review the 🛣️ Roadmap and contribute your ideas
- Grab an issue and open a PR -
Good first issue tag
- Read our contributing guide
Release Cadence
We currently release new tagged versions of the pypi
and npm
packages on Mondays. Hotfixes go out at any time during the week.