PraisonAI is a production-ready Multi-AI Agents framework with self-reflection, designed to create AI Agents to automate and solve problems ranging from simple tasks to complex challenges. By integrating PraisonAI Agents, AG2 (Formerly AutoGen), and CrewAI into a low-code solution, it streamlines the building and management of multi-agent LLM systems, emphasising simplicity, customisation, and effective human-agent collaboration.
Key Features
π€ Automated AI Agents Creation
π Self Reflection AI Agents
π§ Reasoning AI Agents
ποΈ Multi Modal AI Agents
π€ Multi Agent Collaboration
π AI Agent Workflow
π Add Custom Knowledge
π§ Agents with Short and Long Term Memory
π Chat with PDF Agents
π» Code Interpreter Agents
π RAG Agents
π€ Async & Parallel Processing
π Auto Agents
π’ Math Agents
π― Structured Output Agents
π LangChain Integrated Agents
π Callback Agents
π€ Mini AI Agents
π οΈ 100+ Custom Tools
π YAML Configuration
π― 100+ LLM Support
Using Python Code
Light weight package dedicated for coding:
1
pip install praisonaiagents
1
exportOPENAI_API_KEY=xxxxxxxxxxxxxxxxxxxxxx
1. Single Agent
Create app.py file and add the code below:
1
2
3
frompraisonaiagentsimportAgentagent=Agent(instructions="Your are a helpful AI assistant")agent.start("Write a movie script about a robot in Mars")
Run:
1
python app.py
2. Multi Agents
Create app.py file and add the code below:
1
2
3
4
5
6
frompraisonaiagentsimportAgent,PraisonAIAgentsresearch_agent=Agent(instructions="Research about AI")summarise_agent=Agent(instructions="Summarise research agent's findings")agents=PraisonAIAgents(agents=[research_agent,summarise_agent])agents.start()
Run:
1
python app.py
Using No Code
Auto Mode:
1
2
3
pip install praisonai
exportOPENAI_API_KEY=xxxxxxxxxxxxxxxxxxxxxx
praisonai --auto create a movie script about Robots in Mars
const{Agent}=require('praisonai');constagent=newAgent({instructions:'You are a helpful AI assistant'});agent.start('Write a movie script about a robot in Mars');
flowchart TB
subgraph Memory
direction TB
STM[Short Term]
LTM[Long Term]
end
subgraph Store
direction TB
DB[(Vector DB)]
end
Input[Input] ---> Agents
subgraph Agents
direction LR
A1[Agent 1]
A2[Agent 2]
A3[Agent 3]
end
Agents ---> Output[Output]
Memory <--> Store
Store <--> A1
Store <--> A2
Store <--> A3
style Memory fill:#189AB4,color:#fff
style Store fill:#2E8B57,color:#fff
style Agents fill:#8B0000,color:#fff
style Input fill:#8B0000,color:#fff
style Output fill:#8B0000,color:#fff
AI Agents with Different Processes
Sequential Process
The simplest form of task execution where tasks are performed one after another.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
graph LR
Input[Input] --> A1
subgraph Agents
direction LR
A1[Agent 1] --> A2[Agent 2] --> A3[Agent 3]
end
A3 --> Output[Output]
classDef input fill:#8B0000,stroke:#7C90A0,color:#fff
classDef process fill:#189AB4,stroke:#7C90A0,color:#fff
classDef transparent fill:none,stroke:none
class Input,Output input
class A1,A2,A3 process
class Agents transparent
Hierarchical Process
Uses a manager agent to coordinate task execution and agent assignments.
framework:praisonaitopic:Artificial Intelligenceroles:screenwriter:backstory:"Skilled in crafting scripts with engaging dialogue about {topic}."goal:Create scripts from concepts.role:Screenwritertasks:scriptwriting_task:description:"Develop scripts with compelling characters and dialogue about {topic}."expected_output:"Complete script ready for production."