google-research/timesfm
TimesFM
TimesFM (Time Series Foundation Model) is a pretrained time-series foundation model developed by Google Research for time-series forecasting.
- Paper: A decoder-only foundation model for time-series forecasting, ICML 2024.
- All checkpoints: TimesFM Hugging Face Collection.
- Google Research blog.
- TimesFM in BigQuery: an official Google product.
This open version is not an officially supported Google product.
Latest Model Version: TimesFM 2.5
Archived Model Versions:
- 1.0 and 2.0: relevant code archived in the sub directory
v1
. You canpip install timesfm==1.3.0
to install an older version of this package to load them.
Update - Sept. 15, 2025
TimesFM 2.5 is out!
Comparing to TimesFM 2.0, this new 2.5 model:
- uses 200M parameters, down from 500M.
- supports up to 16k context length, up from 2048.
- supports continuous quantile forecast up to 1k horizon via an optional 30M quantile head.
- gets rid of the
frequency
indicator. - has a couple of new forecasting flags.
Along with the model upgrade we have also upgraded the inference API. This repo will be under construction over the next few weeks to
- add support for an upcoming Flax version of the model (faster inference).
- add back covariate support.
- populate more docstrings, docs and notebook.
Install
TODO(siriuz42): Package timesfm==2.0.0 and upload to PyPI .
Run
|
|
Code Example
|
|